Observational constraints on the acceleration of the Universe

نویسندگان

  • Yungui Gong
  • Anzhong Wang
چکیده

Abstract We propose a new parametrization of the deceleration parameter to study its time-variation behavior. The advantage of parameterizing the deceleration parameter is that we do not need to assume any underlying theory of gravity. By fitting the model to the 157 gold sample supernova Ia data, we find strong evidence that the Universe is currently accelerating and it accelerated in the past. By fitting the model to the 115 nearby and Supernova Legacy Survey supernova Ia data, the evidence that the Universe is currently accelerating is weak, although there is still a strong evidence that the Universe once accelerated in the past. The results obtained from the 157 gold sample supernova Ia data and those from the 115 supernova Ia data are not directly comparable because the two different data sets measure the luminosity distance up to different redshifts. We then use the Friedmann equation and a dark energy parametrization to discuss the same problem. When we fit the model to the supernova Ia data alone, we find weak evidence that the Universe is accelerating and the current matter density is higher than that measured from other experiments. After we add the Sloan Digital Sky Survey data to constrain the dark energy model, we find that the behavior of the deceleration parameter is almost the same as that obtained from parameterizing the deceleration parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observational constraints on cosmology from modified Friedmann equation

Recent measurements of type Ia supernovae as well as other concordant observations suggest that the expansion of our universe is accelerating. A dark energy component has usually been invoked as the most feasible mechanism for the acceleration. However, the effects arising from possible extra dimensions can mimic well the role of a dark energy through a modified Friedmann equation. In this work...

متن کامل

Geometrical constraints on dark energy models

This contribution intends to give a pedagogical introduction to the topic of dark energy (the mysterious agent supposed to drive the observed late time acceleration of the Universe) and to various observational tests which require only assumptions on the geometry of the Universe. Those tests are the supernovae luminosity, the CMB shift, the direct Hubble data, and the baryon acoustic oscillatio...

متن کامل

Constraints on the DGP Model from Recent Supernova Observations and Baryon Acoustic Oscillations

Although there is mounting observational evidence that the expansion of our universe is undergoing a late-time acceleration, the mechanism for this acceleration is yet unknown. In the so-called Dvali-Gabadadze-Porrati (DGP) model this phenomena is attributed to gravitational leakage into extra dimensions. In this work, we mainly focus our attention to the constraints on the model from the gold ...

متن کامل

Observational constraints on dark energy model

The recent observations support that our Universe is flat and expanding with acceleration. We analyze a general class of quintessence models by using the recent type Ia supernova and the first year Wilkinson Microwave Anisotropy Probe (WMAP) observations. For a flat universe dominated by a dark energy with constant ω which is a special case of the general model, we find that Ωm0 = 0.30 +0.06 −0...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006